Sains Malaysiana 53(12)(2024): 3329-3338
http://doi.org/10.17576/jsm-2024-5312-16
Kesan Azanium Iodida terhadap Sifat Konduktif Elektrolit Berasaskan Polimer Campuran Poli(Etenol)-Selulosa Metil Eter
(Effect of Azanium Iodide on the Conductive Properties of Poly(Ethenol)-Methyl Ether of Cellulose Blend Based
Electrolytes)
N.A.
SHAMSURI1, J.J. CHIA2,3, M.H. HAMSAN4, M.F.Z.
KADIR1,5 & M. F. SHUKUR3,6,*
1Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
2Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia,
54100 Kuala Lumpur, Malaysia
3Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri 32610 Iskandar, Perak,
Malaysia
4Pusat Pengajian Citra Universiti, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
5Universiti Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
6Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS,
32610 Seri Iskandar, Perak, Malaysia
Received: 22 July
2024/Accepted: 28 October 2024
Abstrak
Elektrolit polimer pepejal (EPP) telah menarik perhatian sebagai pengganti yang berpotensi disebabkan oleh kelenturan mekanikal yang ketara, kebolehterusan proses yang mudah, membolehkan pembentukan peranti penyimpanan yang selamat, ringkas dan mudah dibentuk. Dalam kajian ini, suatu sistem EPP yang terdiri daripada poli(etenol) (PE) dan selulosa metil eter (SME) telah disediakan melalui teknik pelapisan larutan. Pelbagai peratus berat (% bt.) azanium iodida (AI) telah digabungkan dengan EPP PE/SME sebagai pembekal ion untuk meningkatkan kekonduksian ion. Interaksi antara EPP PE/SME dan
AI telah dianalisis melalui analisis spektroskopi inframerah transformasi Fourier (FTIR). Daripada mikroskopi imbasan elektron penyerakan medan (FESEM), didapati bahawa kandungan AI telah memberi kesan yang signifikan terhadap morfologi EPP lalu meningkatkan kekonduksian ion
EPP. Pengaruh AI ke atas sifat elektrik EPP telah dikaji lebih lanjut melalui spektroskopi impedans elektrokimia (EIS). Penggabungan 40 %bt. AI telah mengoptimumkan kekonduksian suhu bilik elektrolit kepada (2.34 ± 0.48) × 10-5 S cm-1.
Kata kunci: Azanium iodida; elektrolit campuran polimer; kekonduksian; poli(etenol); selulosa metil eter
Abstract
Solid
polymer electrolytes (SPEs) have garnered interest owing to their notable
mechanical flexibility and straightforward processability, enabling the
creating of secure, compact and pliable storage devices. In this study, an SPE
system consisting of poly(ethenol) (PE) and methyl
ether of cellulose (MEC) was prepared via solution casting technique. Various
weight percentage (wt.%) of azanium iodide (AI) were
incorporated into the PE/MEC SPEs. The interaction between the PE/MEC SPEs and
AI were analyzed by Fourier-transform infrared
spectroscopy (FTIR) analysis. From field emission scanning electron microscopy
(FESEM), AI contents had significantly affected the morphology of SPEs which
improved the ion conductivity. The influence of AI on the electrical properties
of SPEs were further studied by electrochemical impedance spectroscopy (EIS).
Incorporation of 40 wt.% of AI has optimized the room temperature conductivity
of the electrolyte to (2.34 ± 0.48) × 10-5 S cm-1.
Keywords: Azanium iodide; conductivity; methyl ether of cellulose;
polymer blend electrolyte; poly(ethenol)
REFERENCES
Abdullah, O.G., Hanna, R.R., Ahmed, H.T.,
Mohamad, A.H., Saleem, S.A. & Saeed, M.A.M. 2021. Conductivity and
dielectric properties of lithium-ion biopolymer blend electrolyte
based film. Results in Physics 24: 104135.
Abdullah, S., Ahmad, A.S., Latif, K.S.A., Sobri, N.A.M., Abdullah, N., Hashim, N., Yahya, N.M. &
Mohamed, R.M. 2020. Characterization of solid polymer electrolyte membrane made
of methylcellulose and ammonium nitrate. Journal of Physics: Conference
Series 1532: 012017.
Abdalrahman, A.A., Aziz, S.B. & Karim, W.O. 2022.
EIS and FTIR approaches to study the ion transport parameters and relaxation
dynamics of Na+1 ion in SPE based on MC polymer inserted with sodium
salt. Results in Physics 36: 105439.
Ahmed, H.T., Jalal, V.J., Tahir, D.A.,
Mohamad, A.H. & Abdullah, O.G. 2019. Effect of PEG as a plasticizer on the
electrical and optical properties of polymer blend electrolyte MC-CH-LiBF4 based films. Results in Physics 15: 102735.
Ahmed, H.T. & Abdullah, O.G. 2020.
Structural and ionic conductivity characterization of PEO:MC-NH4I
proton-conducting polymer blend electrolytes based films. Results in Physics 16: 102861.
Arya, A., Sadiq, M. & Sharma, A.L.
2019. Structural, electrical and ion transport properties of free standing
blended solid polymeric thin films. Polymer Bulletin 76: 5149-5172.
Brza, M.A., Aziz, S.B., Anuar,
H.M., Alshehri, S.M., Ali, F., Ahamad,
T. & Hadi, J.M. 2021. Characteristics of a
plasticized PVA based polymer electrolyte membrane and H+ conductor
for an electrical double-layer capacitor: structural, morphological and ion
transport properties. Membranes 11: 296.
Chatterjee, B., Kulshrestha,
N. & Gupta, P.N. 2016. Nano composite solid polymer electrolytes based on
biodegradable polymers starch and poly vinyl alcohol. Measurement 82:
490-499.
Chen, H., Zheng, M., Qian, S., Ling, H.Y.,
Wu, Z., Liu, X., Yan, C. & Zhang, S. 2021. Functional additives for solid
polymer electrolytes in flexible and high-energy-density solid-state
lithium-ion batteries. Carbon Energy 6: 929-956.
Deng, W., Shi, W., Wang, S., Yan, Z., Rui,
Z., Wang, Q. & Li, C.M. 2022. A polypropylene (PP) supported solid polymer
electrolyte enables high-stability organic lithium batteries at low
temperature. Physical Chemistry and Chemical Physics 24: 14424-14429.
Fuzlin, A.F., Bakri, N.A., Sahraoui,
B. & Samsudin, A.S. 2019. Study on the effect of
lithium nitrate in ionic conduction properties based alginate biopolymer electrolytes. Materials Research Express 7: 015902.
Gohel, K. & Kanchan, D.K. 2018. Ionic
conductivity and relaxation studies in PVDF-HFP:PMMA-based
gel polymer blend electrolyte with LiClO4 salt. Journal of
Advanced Dielectrics 08(01): 1850005.
Hamsan, M.H., Shukur,
M.F., Aziz, S.B. & Kadir, M.F.Z. 2019. Dextran from Leuconostoc mesenteroides-doped ammonium salt-based green
polymer electrolyte. Bulletin of Materials Science 42: 57.
Han, S-W. & Ryu, K-Y. 2022. Increased
clearance of non-biodegradable polystyrene nanoplastics by exocytosis through inhibition of retrograde intracellular transport. Journal
of Hazardous Materials 439: 129576.
Hemalatha, R., Alagar, M., Selcasekarapandian, S., Sundaresan,
B. & Moniha, V. 2019. Studies of proton
conducting polymer electrolyte based on PVA, amino acid proline and NH4SCN. Journal of Science: Advanced Materials and Devices 4: 101-110.
Hu, X., Zhang, K., Liu, K., Lin, X., Dey,
S. & Onori, S. 2020. Advanced fault diagnosis for
lithium-ion battery systems: A review of fault mechanisms, fault features, and
diagnosis procedures. IEEE Industrial Electronics Magazine 14:
65-91.
Jeedi, V.R., Narsaiah,
E.L. & Chary, A.S. 2020. Structural and electrical studies of PMMA and PVDF
based blend polymer electrolyte. SN Applied Sciences 2: 2093.
Jenova, I., Venkatesh, K., Karthikeyan, S. & Madeswaran, S. 2023. Characterization of proton conducting
polymer blend electrolyte based on gum tragacanth and
polyvinyl alcohol. Materials Today Proceedings https://doi.org/10.1016/j.matpr.2023.02.018
Liu, J., Khanam, Z., Muchakayala,
R. & Song, S. 2020. Fabrication and characterization of Zn-ion-conducting
solid polymer electrolyte films based on PVdF-HFP/Zn(Tf)2 complex system. Journal of Materials Science: Materials in Electronics 31(8): 6160-6173.
Mandal, D.K., Bhunia,
H., Bajpai, P.K., Chaudhari, C.V., Dubey, K.A. & Varshney, L. 2016.
Radiation-induced grafting of acrylic acid onto polypropylene film and its
biodegradability. Radiation Physics and Chemistry 123: 37-45.
Mallikarjun, A., Kumar, J.S., Sreekanth,
T., Sangeetha, M., Mettu, M.R., Kumar, P.A. &
Reddy, M.J. 2023. Investigation of FT-IR and impedance spectroscopy of
nanocomposite PVDF-HFP based polymer electrolytes. Materials Today
Proceedings https://doi.org/10.1016/j.matpr.2023.01.215
Mei, X., Zhao, W., Ma, Q., Yue, Z., Dunya, H., He, Q., Chakrabarti, A., McGarry, C. &
Mandal, B.K. 2020. Solid polymer electrolytes derived from crosslinked
polystyrene nanoparticles covalently functionalized with a low lattice energy
lithium salt moiety. ChemEngineering 4(3): 44.
Mohammed, M.I., Bouzidi,
A., Zahran, H.Y., Jalalah, M., Harraz,
F.A. & Yahia, I.S. 2021. Ammonium iodide salt-doped polyvinyl alcohol
polymeric electrolyte for UV-shielding filters: Synthesis, optical and
dielectric characteristics. Journal of Materials Science: Materials
Electronic 32: 4416-4436.
Muhammad, F.H. & Winie,
T. 2020. Influence of 1-methyl-3-propylimidazolium iodide ionic liquid on the
performance of dye-sensitized solar cell using hexanoyl chitosan/poly(vinyl chloride) based polymer electrolyte. Optik 208: 164558.
Abdel Naby, A.S.
& Al-Ghamdi, A.A. 2014. Poly(vinyl
chloride) blend with biodegradable cellulose acetate in presence of N-(phenyl
amino) maleimides. International Journal of Biological Macromolecules 70: 124-130.
Nadirah, B.N., Ong, C.C., Saheed,
M.S.M., Yusof, Y.M. & Shukur, M.F. 2020.
Structural and conductivity studies of polyacrylonitrile/methylcellulose blend based electrolytes embedded with lithium iodide. International
Journal of Hydrogen Energy 45(38): 19590-19600.
Nofal, M.M., Hadi,
J.M., Aziz, S.B. & Brza, M.A. 2021. A study of methylcellulose based polymer electrolyte impregnated with
potassium ion conducting carrier: impedance EEC modeling,
FTIR, dielectric, and device characteristics. Materials 14: 4859.
Parida, B.N., Das, P.R., Padhee,
R. & Choudhary, R.N.P. 2013. Structural, dielectric and electrical
properties of Li2Pb2La2W2Ti4Nb4O30 ceramic. Bulletin of Materials Science 36: 883-892.
Patla, S.K., Mukhopadhyay, M. & Ray, R.
2018. Ion specificity towards structure-property correlation of poly (ethylene
oxide) [PEO]-NH4I and PEO-KBr composite
solid polymer electrolyte. Ionics 25(2): 627-639.
Pritam, Arya, A. & Sharma, A.L. 2019.
Dielectric relaxations and transport properties parameter analysis of novel
blended solid polymer electrolyte for sodium-ion rechargeable batteries. Journal
of Materials Science 54: 7131-7155.
Rag, S.A., Dhamodharan,
D., Selvakumar, M., Bhat, S., De, S. & Byun, H.S.
2022. Impedance spectroscopic study of biodegradable PVA/PVP doped TBAI ionic
liquid polymer electrolyte. Journal of Industrial and Engineering Chemistry 111: 43-50.
Ramli, N.S., Noor, S.A.M., Su’ait, M.S., Khoon, L.T. &
Ahmad, A. 2019. The study of electrochemistry and chemical interaction SPE
based PVDF-HFP/ENR50-LiTf. Journal of Polymer Science and Technology 4:
16-21.
Saeed, M.A.M. & Abdullah, O.G. 2020.
Effect of structural features on ionic conductivity and dielectric response of
PVA proton conductor-based solid polymer electrolytes. Journal of Electronic
Materials 50: 432-442.
Shamsuri, N.A., Zaine,
S.N.A., Yusof, Y.M., Yahya, W.Z.N. & Shukur, M.F.
2020. Effect of ammonium thiocyanate on ionic conductivity and thermal
properties of polyvinyl alcohol–methylcellulose–based polymer electrolytes. Ionics 26: 6083-6093.
Shamsuri, N.A., Zaine,
S.N.A., Yusof, Y.M. & Shukur, M.F. 2021. Ion
conducting methylcellulose‐polyvinyl alcohol blend
based electrolytes incorporated with ammonium thiocyanate for electric
double layer capacitor application. Journal of Applied Polymer Science 139:
e52076.
Shukur, M.F., Ithnin,
R. & Kadir, M.F.Z. 2014. Protonic transport analysis of starch-chitosan blend based electrolytes and application in electrochemical
device. Molecular Crystal and Liquid Crystal 603: 52-65.
Shukur, M.F., Azmi, M.S., Zawawi,
S.M.M., Majid, N.A., Illias, H.A. & Kadir, M.F.Z.
2013. Conductivity studies of biopolymer electrolytes based on chitosan
incorporated with NH4Br. Physical Scripta T157: 014049.
Sundaramahalingam, K., Muthuvinayagam,
M., Nallamuthu, N., Vanitha, D. & Vahini, M. 2019. Investigations on lithium acetate-doped
PVA/PVP solid polymer blend electrolytes. Polymer Bulletin 76:
5577-5602.
Zhou, D., Shanmukaraj,
D., Tkacheva, A., Armand, M. & Wang, G. 2019.
Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem.
5: 2326-2352.
*Corresponding author; email:
mfadhlullah.ashukur@utp.edu.my